
The Graph Example
Overview

Graph plots 2D line graphs of functions of the form y = f(x) and
3D surfaces given by the set of equations x = f(u,v); y = f(u,v); z =
f(u,v).    Important things that Graph demonstrates are being a
source of Object Links,    use of the 3D Kit and general NeXTSTEP
programming of a small, multi-document application.

The heart of the application is the Expression class.    Objects
of this class parse the text of mathematical expressions, and can
then evaluate the expressions given a set of values for the
variables found in the expression.    The Expression class gives

Graph a great flexibility in that it can graph novel expressions,
intead of being limited to a pre-compiled set.

The Expression class is built using the Unix tools yacc and lex. 
The parsing code will probably be confusing for anyone not familiar
with these tools.    However, the Expression class is designed to
have a sufficiently complete interface that it can be used without
understanding these internals.    Hopefully, between the
documentation in the header file and the example usage in this
program will allow others to incorporate this object in other
applications.    The ability to dynamically interpret new expressions
should greatly enrich applications which make modest use of
formulas.

The rest of the application is fairly standard NeXTSTEP
programming, using the Expression class' abilities to create the
data points for 2D and 3D graphs.    A Display PostScript userpath is
used to draw the line graph, and RenderMan is used to image the
3D surfaces.    Both types of documents function as Object Link
sources.

Road Map

Expression.m implement the expression class.    They are
supported by the files expr.ym (a yacc source file), token.lm(a lex
source file) and exprDefs.h (some common declarations shared
between these files).    The files expr.m, token.m, y.tab.h are by-

products of the yacc and lex phases of the build.

GraphDoc.m and GraphDoc.nib implement a 2D Graph
document.    For each 2D Graph document, a GraphDoc object is
created and a instance of the Graph document user interface is
loaded from GraphDoc.nib.    The GraphDoc object coordinates the
user actions performed on the various controls, and uses an
Expression object and a LineGraph view to create the graphs
requested.    Object Link support is implemented in GraphDoc.m.

LineGraph.m implement a view which knows how to draw an
xy line plot.    It uses Display PostScript userpaths for top
performance.

Graph3DDoc.m and Graph3DDoc.nib implement a 3D Graph
document.    For each 3D Graph document, a GraphDoc object is
created and a instance of the 3DGraph document user interface is
loaded from Graph3DDoc.nib.    The Graph3DDoc object uses three
Expression objects to evaluate the user's equations, a PointMesh
surface to render the data and a RotatorCamera to view it.    Object
Link support is implemented here also.

PointMesh.m is a subclass of N3DShape, which uses a
RenderMan bilinear patch mesh to render a two dimensional mesh
of points in 3-space (the sort of surfaces Graph plots).

RotatorCamera.m is a small subclass of N3DCamera.    Its only
purpose is to implement the mouse tracking needed to use a

N3DRotator to rotate the graph.   

ThreeDPanel.m and ThreeDPanel.nib implement a very
simple accessory panel to allow the user to change a few attributes
of the 3D graphs.

GraphApp.m and GraphApp.h implement the delegate of
NXApp.    There is one instance of this class in the entire application.
This class mostly responds to non-document specific commands,
such as putting up the Help or Info panels.    It also receives
messages from the Workspace Manager to open documents.   
Finally it is the keeper of the application's NXStringTable, which
holds the strings used by Graph, translated to a particular
language.

GraphApp.nib holds the global user interface for the program,
such as the menus.    It also holds the application's small
NXStringTable.    These strings are loaded from the file
Graph.strings.    Help.nib and Info.nib hold the user interface for
the Help and Info panels.

AppIcon.tiff, DocIcon.tiff and DocIcon3D.tiff hold the
images for the application and document icons. Graph.h is used to
make the precompiled header file, Graph.p.    Makefile,
Graph_main.m, PB.project, PB.gdbinit and Graph.iconheader
are the usual files that Project Builder manages.   
Makefile.postamble and Makefile.preamble contain a few
additions to the build process.    vers.c is a derived file created by

the vers_string command as part of the build process.    It contains
some useful version information about the program.

Highlights

GraphDoc and Graph3DDoc have the minimal amount of code
needed to make a simple document be an Object Link source.

The PointMesh class shows how to turn a set of data points in 3-
space into a surface RenderMan can display.

The RotatorCamera shows the minimal glue needed to use the
N3DRotator class to manipulate an Object.    However, there should

be more user feedback during the rotation, such as a lightly
overlaid virtual sphere to give the user some idea of the rotation
axes he is working with.

GraphDoc's and Graph3DDoc's -copyGraph: methods are a
good example of how simple it is to implement copying a view's
PostScript or RenderMan into the Pasteboard.    Normally this
wouldn't be a separate command in the user interface, but this was
done because there is no notion of selection in the view where the
graph is drawn.

The GraphApp class is a good example of the minimal amount
of glue you need to respond to Workspace messages to open
documents (see -appOpenFile:type: and -

appAcceptsAnotherFile:).    The -appDidInit: method shows how
to open a new document when launched if the user didn't double
click on a document.

GraphDoc has a good use of TypedStreams for reading and
writing its documents.

The save methods in GraphDoc might be helpful in dealing with
the various cases of saving.

LineGraph has a nice example of userpaths.    It stores its data
in a form that can be directly passed to DPSDoUserPath().

In LineGraph.m, drawSelf:: and drawAxes() have a PostScript

trick of maintaining a consistent line width regardless of how the
view has been zoomed.

Graph takes a fairly minimal approach to localization.    Since it
has so few strings, the strategy of putting them in one global
NXStringTable works fine.    Any real application will want to break
up their strings into tables along functional boundaries.

Less exemplary parts (exercises for the reader?)

GraphDoc and Graph3DDoc share a lot of code.    Some
common functionality could certainly be factored out into an
abstract super-class, eliminating the current code duplication.

Graph needs some good icons for itself and its documents!

A SplitView couple be used to enlarge the viewing area of the
graphs.    I think it would be best to slide the lower half of the
window down instead of covering it from top to bottom, since the
parameter sliders are more useful than those controlling the
domain.

